
Falkirk Wheel: Rollback Recovery for
Dataflow Systems

Ionel Gog
UC Berkeley

ionel@berkeley.edu

Michael Isard
Google Research

misard@google.com

Martín Abadi
Google Research
abadi@google.com

Abstract
Data processing applications often combine computations
with disparate fault-tolerance requirements. For example,
batch computations prioritize throughput over recovery la-
tency, and can tolerate recovery delays of up to several min-
utes, while streaming computations expect recovery laten-
cies of at most a few seconds. However, state-of-the-art data
systems each offer a single fault-tolerance regime, so com-
plex applications either: (i) suffer performance degradation
in steady state and during recovery due to the poor fit of the
fault-tolerance regime for parts of the applications, or (ii) are
difficult to maintain because they are developed using fragile
combinations of batch and streaming systems that provide
different APIs and schedulers, and evolve independently.

This paper describes Falkirk Wheel, a design for rollback
recovery that enables applications to combine different fault-
tolerance regimes. Falkirk Wheel provides a design based on
logical times, which is expressive enough for general applica-
tions including incremental and iterative computations. Our
experiments show that an implementation of Falkirk Wheel
in Naiad successfully combines fault-tolerance regimes, with
an order of magnitude lower response latencies in steady
state than Naiad’s batch-tuned fault-tolerance. Moreover,
Falkirk Wheel is competitive with streaming systems tuned
for single fault-tolerance regimes, as it provides 3-5× lower
response latencies than Flink and Drizzle in steady state and
during failure recovery on the Yahoo! Streaming Benchmark.

CCS Concepts
• Computer systems organization→ Reliability.

Keywords
Fault tolerance, Dataflow systems, Rollback recovery

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SoCC ’21, November 1–4, 2021, Seattle, WA, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8638-8/21/11.
https://doi.org/10.1145/3472883.3487011

Real-time connected
 components

 User
queries in

Join with
popular hashtags

Results

Store billing
info

Pull tweet
data inputs

Select tweets
with @ mentions

Select user
tweets

Collaborative
filtering

Data
warehouse

Ephemeral
Batch
Lazy checkpointing
Eager checkpointing

 Join with
ad info

Figure 1: An example ad-serving application com-
prised of several batch, streaming, and iterative com-
ponents. Each component uses a different fault-
tolerance regime.

ACM Reference Format:
Ionel Gog, Michael Isard, and Martín Abadi. 2021. Falkirk Wheel:
Rollback Recovery for Dataflow Systems. In ACM Symposium on
Cloud Computing (SoCC ’21), November 1–4, 2021, Seattle, WA, USA.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3472883.
3487011

1 Introduction
While fault-tolerant systems for data processing have tradi-
tionally been designed for either high-throughput batch [18,
25, 37] or real-time streaming [3, 10] operation, many appli-
cations combine computations with disparate fault-tolerance
requirements. Consider as an example the ad-serving applica-
tion in Fig. 1. The application receives as input the stream of
tweets from the Twitter firehose, and consists of five compo-
nents that execute in parallel: (i) selects tweets that mention
user accounts, and computes the weakly connected compo-
nents in real-time of the Twitter graph of user mentions,
(ii) selects tweets created by user accounts, and periodically
runs collaborative filtering to batch-compute ad recommen-
dations, (iii) joins ad recommendations with the output of
the connected components computation in order to produce
similar ad recommendations to connected users, (iv) enables
commercial users to query the application to discover popu-
lar hashtags within connected components, which can help
companies to better target ads, and (v) saves statistics and
billing information for the served ads in a key-value store.
Four distinct fault-tolerance regimes are appropriate for

different parts of such an application:

https://doi.org/10.1145/3472883.3487011
https://doi.org/10.1145/3472883.3487011
https://doi.org/10.1145/3472883.3487011

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Ionel Gog, Michael Isard, and Martín Abadi

• Ephemeral regime: is used in components that do not
store mutable state, require high-throughput processing,
and can tolerate slow recovery. Data sources send messages
to such components, and these messages are processed with-
out being saved to stable storage. As a result, data sources
do not receive an acknowledgment until the messages have
flowed through the components, and fault tolerance is at-
tained by requiring data sources to retry on failure. In the
example application, the component that joins ad recom-
mendations and hashtags would benefit from this regime.
• Batch regime: is used in components that persist out-
puts and can tolerate re-execution in the case of a failure.
This introduces a high increase in latency, possibly of min-
utes. For example, the data-intensive collaborative filtering
computation is a candidate for this regime because it runs
periodically and its results are not required to be current.
• Lazy checkpointing regime: is used in components that
maintain complex state, which must be regularly check-
pointed (e.g., the computation of weakly connected compo-
nents). In this regime, it is acceptable to re-execute a few
seconds’ worth of work in the event of a failure, so check-
points need not be taken every time the state is updated.
• Eager checkpointing regime: is used in components
that must persist messages and state updates as soon as
they are processed in order to guarantee consistency with
delivered results (e.g., saving ad billing data).
Existing fault-tolerance designs fit several of these regimes,

but no current data processing system can support all of
them at once [4, 13, 31, 32, 36, 37]. Batch processing sys-
tems [18, 37] optimize for throughput and only support the
batch regime, which does not offer low recovery time. By
contrast, stream processing systems [3, 4, 10] support the
eager checkpointing regime, which offers low recovery time,
but reduces throughput. As a result, an application like the
one in Fig. 1 is executed in one of two ways: (i) a single
system and fault-tolerance regime, which might introduce
performance penalties if the fault-tolerance regime is not
well-suited for all components, or (ii) several stand-alone sys-
tems, each with its own fault-tolerance regime. For example,
the application might run on Naiad [31], which provides a
batch-tuned fault-tolerance regime, but its real-time weakly
connect components computation would suffer from high-
latency recovery. Alternatively, the application might use
multiple systems: Spark [37] to execute the collaborative
filtering component, and Storm [10] to run the the weakly
connected components computation. The output of each
application component might be saved on a distributed file
system (e.g., HDFS), fromwhere dependent components read
it [7]. However, this approach has two main drawbacks:
(1) Performance may degrade because all components must
output on the distributed file system to communicate with

dependent components, even when a component and its
fault-tolerance regime do not need to persist outputs.
(2) Ensuring that the application recovers in a globally con-
sistent state in the event of a failure is difficult as all the
systems have to coordinate to decide how far components
need to rollback and what messages must be replayed.
In this paper we describe the Falkirk Wheel1 design which

subsumes previous, more specialized fault-tolerance regimes
(§2). With the help of FalkirkWheel, applications can execute
components in different fault-tolerance regimes, and benefit
from the properties of each regime. FalkirkWheel enables the
execution of complex applications by tagging (implicitly or
explicitly) all events with partially ordered logical times (§3.1),
while allowing each application component to use its own
logical time domain (i.e., its own definition of logical time)
suited for its own fault-tolerance regime (§3.2). Moreover,
Falkirk Wheel provides an algorithm for choosing a set of
logical times to roll back to such that the application remains
in a globally consistent state after a failure (§3.3). Falkirk
Wheel restores from saved state the effects of events at logical
times in the chosen set, and re-executes events with logical
times outside the set. Finally, unlike previous fault-tolerance
solutions [13, 31], Falkirk Wheel supports selective rollback
(§3.4), whereby a component that has consumed messages at
two logical times 𝑡1 and 𝑡2 may be able to preserve its work
for time 𝑡1 after rollback, but undo and re-execute its work
for 𝑡2, independently of the order it performed the work.
Falkirk Wheel builds on a large body of prior work on

rollback recovery [19]. In particular, FalkirkWheel is inspired
by theoretical research on timely rollback [2]. While that
research defines themathematical framework underlying our
design in terms of logical times, this paper shows for the first
time how to map the abstractions used by timely rollback to
fault-tolerance implementation techniques (§4). Furthermore,
the paper extends prior work by addressing concerns that
are typically of less interest from a theoretical perspective:
(i) commit of input/output data in order to offer exactly-once
semantics, (ii) garbage collection of persisted state in order to
support long-running applications, and (iii) efficient tracking
of application progress to support consistent rollbacks2.
To demonstrate the efficacy of our design, we apply it

to Naiad [31], a general dataflow system that can execute
complex applications that combine batch, graph, low-latency
incremental, and iterative stream processing. We show
that Naiad with Falkirk Wheel is both practical and high-
performance: (i) Falkirk Wheel enables the execution of
application components in different fault-tolerance regimes,
and thus offers low-latency recovery for some components

1Named after a prior solution for high-throughput streaming rollback [12].
2We also developed technical extensions to the prior theoretical work, in
particular to deal with logical time domains for sequence numbers (§3.1).

Falkirk Wheel: Rollback Recovery for Dataflow Systems SoCC ’21, November 1–4, 2021, Seattle, WA, USA

(e.g., real-time incremental components) and high through-
put for others (e.g., batch components) (§5.1), (ii) Falkirk
Wheel combines fault-tolerance regimes and provides an
order of magnitude lower response latencies than Naiad’s
current batch-tuned fault-tolerance regimes (§5.2), and (iii)
Falkirk Wheel can be set to checkpoint at desirable times,
and thus offers 3-5× lower response latencies than stream
processing systems (Flink [6] and Drizzle [36]) on the Yahoo!
Streaming Benchmark (§5.3).

The key contributions of this paper are:
• a design based on logical time (§3.1) for combining fault-
tolerance regimes (§3.2), and an algorithm for choosing a
globally consistent state to roll back to after a failure (§3.3);
• selective rollback, which enables interleaved processing
of messages with distinct logical times (§3.4);
• an implementation of Falkirk Wheel that includes sup-
port for long-running applications, provides input/output
commit guarantees, and garbage collection of state (§4); and
• an evaluation confirming the practicality and performance
benefits of Falkirk Wheel (§5).

2 Background

Setting the stage, in this section we summarize a few fault-
tolerance regimes and rollback-recovery protocols, and com-
ment on the design and performance trade-offs they embody.
The intention is not to criticize existing techniques, but to
explain their different strengths and motivate the Falkirk
Wheel approach of combining them in a single system.

In our discussion we refer to a processing operator in
a dataflow graph as a processor. Each processor 𝑝 receives
messages from other processors on a set of point-to-point
streams, which we call edges (𝐸 (𝑝)). Moreover, we suppose
that one or more processors may share a physical CPU, and a
single network connection may be used to transmit messages
between multiple processors on different machines. Finally,
we assume that processors fail-stop, and that network fail-
ures are modeled as though the receiving processor(s) have
failed and messages in transit were lost.
Lazy checkpointing regime. Chandy and Lamport de-
scribed a general protocol for checkpointing distributed
snapshots of an arbitrary distributed system [15]. In this
protocol, the system performs a periodic global checkpoint
by sending a marker message to source processors, which
forward the marker to downstream processors, and so forth
until all processors receive the marker. Each processor 𝑝
takes a checkpoint 𝐶𝑝 of its state upon the receipt of a
marker message. Besides the processor state, the checkpoint
also includes a sequence of undelivered messages 𝑀𝑒 on
each edge 𝑒 ∈ 𝐸 (𝑝). The design of the protocol ensures that
the sets 𝐶𝑝 and𝑀𝑒 form a globally consistent system state

such that following a failure all processors can be restored
to the state at the most recently saved checkpoint.
This protocol for distributed snapshots is similar to our

lazy checkpointing regime since processors do not check-
point every state update. The regime offers good throughput
in steady state, and thus is used in the Naiad and Flink [13,
31], but it has several drawbacks: (i) each processor must
have additional logic to save a checkpoint at an arbitrary
moment chosen by the system (logic which must be provided
by users), (ii) processors can incur checkpointing overhead
in the non-failure case, (iii) processors may checkpoint at
arbitrary times, which may affect application latency in un-
desirable moments and (iv) all processors, even non-failed
ones, must roll back to a checkpoint following a failure.
Eager checkpointing regime. Streaming systems such as
Storm [10] and MillWheel [3] guarantee exactly-once mes-
sage delivery to stateful processors, corresponding to the ea-
ger checkpointing regime of Fig. 1. In these systems, when a
processor receives a message, it persists its updated state and
any resulting outgoing messages before it acknowledges the
processed message. If a processor fails, the system restores
the processor to its most recently persisted state, which in-
cludes the effect of all acknowledged messages.

This fault-tolerance regime has four benefits: (i) it allows
processors to choose independently when to checkpoint,
(ii) it can guarantee high availability since processors do
not have to replay many messages, (iii) non-failed proces-
sors do not need to be interrupted, and (iv) processors may
join and leave the computation with low overhead since the
system does not need to keep track of the dataflow graph.
Drawbacks include a throughput penalty because all state
mutations must be persisted, and a latency penalty because a
processor’s output messages must be acknowledged by their
recipient processors before a processor can acknowledge
the next input message. While this requirement to acknowl-
edge messages ensures exactly-once semantics, it may limit
the complexity of applications due to long chains of depen-
dent acknowledgments (e.g., upstream processors waiting
for acknowledgments from downstream processors). Such
dependency chains prevent streaming components from pro-
cessing time windows in parallel, and iterative components
from pipelining iterations.
Ephemeral regime. Both Storm [10] and MillWheel [3]
also allow processors to execute in a relaxed fault-tolerance
regime. In this regime, the processors do not eagerly check-
point each state update before proceeding to the next, but
instead lazily and independently checkpoint state and ac-
knowledge messages. Upon a failure, affected processors
restart from their latest checkpoint, replay unacknowledged
messages, and thus might duplicate messages. Therefore,
this regime guarantees at-least-once semantics and offers
better performance than the eager checkpointing regime, but

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Ionel Gog, Michael Isard, and Martín Abadi

Fault-tolerance regime Processors that must roll back Throughput Steady state latency Recovery latency
Lazy checkpointing/distributed snapshots all medium medium medium

Eager checkpointing failed low high low
Batch failed or consumed input from failed high low high

Ephemeral failed or consumed input from failed high low very high
Table 1: Properties of fault-tolerance regimes. We show desirable properties in green, and undesirable properties
in red.

should be used only for processors with idempotent compu-
tations, or in applications that tolerate inconsistent states.
Batch regime. Many acyclic batch dataflow systems [18,
25, 37] share a fault-tolerance regime pioneered by MapRe-
duce [18]. In these systems, each application processor pro-
ceeds through a set of steps. First, a processor reads all of
its input messages, followed by an implicit notification af-
ter the input is complete. Next it executes a user-specified
computation, updates its state, and writes output. Finally,
the processor empties its state, and quiesces. Therefore, in
case of a failure, these systems choose to restore each failed
processor either to a state where it has processed no input
data, or to a state where it has processed all inputs.
This regime has the appealing property that processors

are always restored to an empty state after failure, so the
(user-supplied) processor logic does not need to include any
checkpointing code. On the other hand, any computation
in progress at the time of a failure is lost and must be re-
executed. Nonetheless, non-failed processors do not need to
be interrupted, unless they have consumed messages from
processors that were restored to the empty state. As a result,
the model is well suited to offline data-parallel applications,
where throughput in the absence of failures is paramount
and high recovery latency is tolerable.

3 Falkirk Wheel: Hybrid Fault Tolerance

Complex applications would benefit from solutions that com-
bine the four broad classes of fault-tolerance regimes de-
scribed in §2 (see Table 1). Where it leads to acceptable per-
formance, developers can write processors that execute in
the batch regime and never checkpoint, sidestepping the
overhead and complexity of serializing and restoring state.
By contrast, developers can write dedicated checkpointing
code for processors that benefit from keeping large amounts
of state in memory (perhaps indexed in sophisticated ways),
and thus avoid rebuilding the state every time the processor
fails by using the lazy checkpointing regime, or by persisting
each state update and using the eager checkpointing regime.

In order to enable applications to combine fault-tolerance
regimes, Falkirk Wheel must ensure that processors roll back
to a globally consistent state after one or more processor
failures. Informally, we express the requirements of a globally
consistent state rollback in terms of pairwise constraints on
processors. If processor 𝑝 sends to processor 𝑞 then:

(1) 𝑞 may roll back only to the extent that it will not need
to receive again any message that 𝑝 has not logged; and
(2) 𝑞 must roll back far enough to undo the effect of any
messages invalidated by 𝑝’s rollback.
Concretely, when a processor 𝑝 in state 𝑆 fails, Falkirk

Wheel must make 𝑝 consistent with its upstream and down-
stream neighbor processors. Consistency can be achieved
with upstream neighbors either by re-delivering lost mes-
sages from upstream processors to 𝑝 , rolling back upstream
processors to match 𝑝’s latest checkpointed state 𝑆∗, or a
mixture of both. Moreover, if processor 𝑝 sent messages
while transitioning from state 𝑆∗ to 𝑆 , the downstream recip-
ients of those messages must typically be rolled back in case
some source of non-determinism causes processor 𝑝 to emit
different messages after processor 𝑝 is restarted in state 𝑆∗.
Therefore, Falkirk Wheel has to be able to reason about

the relationship between the events at a processor, the mes-
sages sent by the processor, and the states of its neighboring
processors. Falkirk Wheel enables such reasoning and cap-
tures the above constraints in terms of two central concepts:
logical times (§3.1) and bridges between logical time domains
(§3.2). In Falkirk Wheel each set of processors can operate
in their own logical time domain, with logical times evolv-
ing differently in each domain. For example, a processor
that tags each output message with a different logical time
might execute in the eager checkpointing regime, and thus
log each state and output message. By contrast, a processor
that tags all output messages with one logical time during a
wall-clock time window operates in a different logical time
domain, might use the lazy checkpointing regime, and thus
checkpoint only once per time window.
In this section, we focus on the case where logical times

are totally ordered on each edge, and messages on an edge
with logical time 𝑡1 are delivered before messages with logi-
cal time 𝑡2 > 𝑡1. While this case is sufficient to support the
fault-tolerance regimes and the systems we describe in §2,
we relax these constraints in §3.4 to enable the parallel execu-
tion of different logical times and selective rollback of state
corresponding to different logical times. We describe the
concepts informally, but formalize them in §3.3, and provide
a regime-agnostic algorithm for globally consistent rollback.
3.1 Logical Times

Falkirk Wheel tags messages between processors with par-
tially ordered logical times of two broad categories:

Falkirk Wheel: Rollback Recovery for Dataflow Systems SoCC ’21, November 1–4, 2021, Seattle, WA, USA

𝑝

𝑒1
𝑀(𝑒1 ,6) 𝑀(𝑒1 ,5)

𝑒2

𝑀 (𝑒 2,9
)𝑀

(𝑒 2,8
)

𝑒3

𝑀(𝑒3,2)
𝑝′

𝑒1

𝑀
(𝑒1 ,6)

𝑒 2

𝑀 (𝑒 2,
9)
𝑀 (𝑒 2,

8)

𝑒3

𝑀(𝑒3,3) 𝑀(𝑒3,2)

(a) Sequence numbers.

𝑞

𝑒4
𝑀
(2) 𝑀

(2)

𝑒 5

𝑀 (3)
𝑀 (2)

𝑒6
𝑞′

𝑒4

𝑒 5

𝑀 (3)

𝑒6

𝑀(2)

(b) Structured times: epochs.

𝑟 ...
𝑒7

𝑀(3) 𝑀(2)

𝑒8

𝑀(1,1)
𝑟 ′ ...

𝑒7

𝑀(3)

𝑒8

𝑀(2,1)

𝑀(1,1)

(c) Structured times: entering a loop.

Figure 2: Example of processors that operate in different logical time domains. Tuples (·) show the logical time of
each message. In Fig. 2a, the logical time of a message with sequence number 𝑛 on edge 𝑒 is (𝑒, 𝑛). 𝑝 has processed
the first four messages on edge 𝑒1 and the first seven on 𝑒2, and has sent two messages on 𝑒3. 𝑝 ′ shows 𝑝’s next
state in which it has processed another message on 𝑒1 and has issued a message on 𝑒3 in response. Fig. 2b uses
epoch numbers as logical times; all messages in a given epoch have the same logical time. 𝑞′ has processed and
sent all messages of the first two epochs. Fig. 2c uses structured logical times, generalizing epochs. 𝑟 forwards
incoming messages into a loop that operates in a different logical time domain, which includes an additional
loop iteration counter (shown in red). 𝑟 ′ has started the loop for the second epoch, and is about to complete the
first loop iteration of the first epoch.

• Sequence numbers assign a message counter to every
input and output of a processor. They are useful for un-
structured computations where little is known about the
semantics of the processor, since they track computation in
a fine-grained way.
• Structured timesmay be shared by many input and out-
put messages. They are used for structured computations,
where processors may associate each input message with
a particular epoch of input, and may tag all consequent
state updates and output messages with an epoch. We use
the term epoch for a batch of data that shares fate for the
purposes of fault tolerance, but more generally, structured
logical times can include other coordinates beyond an epoch,
for example to indicate nested loop iteration counts.
Sequence numbers are system-defined and dynamic: a

processor with several inputs may produce outputs with
different sequence numbers based on the non-deterministic
arrival times of messages on its input edges (see Fig. 2a for
an example of a processor with two inputs and two outputs,
which uses sequence numbers). By contrast, structured logi-
cal times are application-defined, and are used when each
message is associated with a particular batch or epoch of
input (see Fig. 2b). Moreover, structured logical times are
used in applications that include loops implemented as dis-
tributed sets of processors, and that benefit from overlapping
computations from different loop iterations (e.g., weakly con-
nected components). Each structured logical time indicates
an input epoch along with loop counters tracking progress
through (possibly-nested) iteration. Fig. 2c shows an example
of structured logical times in the context of such a loop.
Falkirk Wheel uses logical times to determine a globally

consistent rollback after a failure. It chooses a set of logical
times at each processor, which we call a time span (or span),
and restores the processor to a state that includes only the
effect of the delivered messages with logical times in the

Batch

Epochs
domain

Real-time

Sequence numbers
domain

n

m

p q

s

r

𝜙𝑒 (𝑠)

Figure 3: Application composed of a batch and a real-
time component. The components have different fault
tolerance requirements, and thus use different logical
time domains. 𝜙 bridges between the domains.

chosen span. We note that Falkirk Wheel may be able to
“roll back” a non-failed processor to a special span ⊤, which
includes all logical times for processed messages (i.e., the
processor continues working unaffected by the failure).

3.2 Bridging between Logical-Time Domains

One of the key features of Falkirk Wheel is its ability to exe-
cute applications comprised of components executing under
different fault-tolerance regimes (i.e., in different logical time
domains). Fig. 3 shows a simplified example of such an ap-
plication, which consists of batch and real-time components
that execute in different logical time domains. The batch
component is optimized for throughput, tags messages with
epochs, and restarts an entire epoch in case of a failure. The
real-time component is optimized for low-latency recovery,
uses sequence numbers, and checkpoints each state change.

In order to compute globally consistent rollbacks for this
application, Falkirk Wheel must bridge between the two log-
ical time domains. Therefore, for each edge 𝑒 which connects
two logical time domains (from processor 𝑝 to 𝑞), Falkirk
Wheel uses a transformer function 𝜙𝑒 (𝑠) that maps a span 𝑠

at 𝑝 to a span at 𝑞. The function 𝜙𝑒 summarizes the effects
that 𝑝 caused at 𝑞, and encodes information about the seman-
tics of 𝑝’s behavior to ensure that neighboring processors’
spans are consistent at rollback. Given a processor 𝑝 and an
outgoing edge 𝑒 , the span 𝜙𝑒 (𝑠) is a conservative estimate of

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Ionel Gog, Michael Isard, and Martín Abadi

the logical times that were “fixed” on 𝑒 given the messages in
𝑠 at 𝑝 . In particular, 𝑝 is guaranteed not to have produced any
messages with logical times in 𝜙𝑒 (𝑠) as a result of processing
a message with a logical time outside (later than) 𝑠 . This
means that it is “safe” to roll 𝑞 back to 𝜙𝑒 (𝑠) whenever 𝑝 rolls
back to a span at least as large as 𝑠 . As long as the guarantee
is met, any choice of 𝜙 will lead to correct behavior. If we do
not know anything about the semantics of 𝑝 we can always
set𝜙𝑒 (𝑠) = ∅ (i.e., roll 𝑞 back to its initial state), but we would
like to choose it as large as possible, since a larger 𝜙 will
allow us to preserve more work during rollbacks.

Only processors that manipulate logical time (e.g., control-
flow processors) and those that bridge between time domains
need non-trivial 𝜙 functions. Nonetheless, we discuss several
instances of bridging between logical time domains:
Transformers for sequence number spans. When logi-
cal times are pairs of the form (𝑒, 𝑛) where 𝑒 is an edge and
𝑛 is the sequence number of a message on that edge, we let
(𝑒1, 𝑛1) ≤ (𝑒2, 𝑛2) if and only if 𝑒1 = 𝑒2 and 𝑛1 ≤ 𝑛2. Thus,
logical times form a partial order and are comparable only if
they correspond to messages on the same edge, and within
an edge sequence numbers indicate the natural ordering. The
span at a given state of a processor is the set of sequence
numbers of messages it has processed to reach that state.
The transformed span along its outgoing edge 𝑒 is the set
of message sequence numbers it has sent along that edge
in response to the incoming messages it has processed in
a particular program execution. The transformer may be a
function not only of the logical times of input messages but
also delivery order and other non-deterministic choices.
Connecting epochs and sequence numbers. Fig. 3 shows
a processor 𝑝 that receives messages from batch processors
that tag messages with epochs, and sends messages to pro-
cessor 𝑞 that eagerly checkpoints according to sequence
numbers. In this case the application might require 𝑝 to for-
ward all epoch 𝑡1 data before sending any epoch 𝑡2 data, if
necessary buffering epoch 𝑡2 data. If, during an execution,
𝑝 sends 𝑛 epoch 𝑡1 messages on edge 𝑒 , then we would let
𝜙𝑒 ({𝑡1}) be the smallest span that contains logical time (𝑒, 𝑛).
Entering a loop. Fig. 2c shows a processor 𝑟 , which receives
messages tagged with epochs and sends them to a processor
in a logical time domain that includes a loop iteration counter.
Outputmessages have logical times (𝑡, 𝑐)where 𝑡 is the epoch
of the incoming message and 𝑐 is the iteration counter. In
this case we would choose 𝜙𝑒 (𝑠) to be {(𝑡, 𝑐) : 𝑡 ∈ 𝑠}.

3.3 Globally Consistent Rollback

Connecting logical times and transformers, we now detail
the constraints necessary for rolling back to a globally con-
sistent state, and an algorithm for choosing such a state. We
first introduce notation for additional metadata and outputs
Falkirk Wheel must capture for each edge 𝑒:

• 𝐿𝑒 : the sequence of messages sent on edge 𝑒 that were
logged (if any);
• 𝑇𝐷𝑒

: the set of logical times of any messages send on edge
𝑒 but not logged (i.e., discarded in case of a failure); and
• 𝑇𝑀𝑒

: the set of logical times of any messages that arrived
and were processed on edge 𝑒 .
We write𝑇𝐷𝑒

(𝑠) for the set of times in𝑇𝐷𝑒
that correspond to

messages generated in response to events in a span 𝑠 . Even if
processors do not log messages or save metadata we indicate
conservative estimates of the missing quantities that still
allow the application to roll back to a consistent state.
The constraints that must be satisfied between a pair of

processors, where 𝑝 sends to 𝑞 on edge 𝑒 , are:
No discarded messages are lost. The first constraint is
𝑇𝐷𝑒

(𝑠 (𝑝)) ⊆ 𝑠 (𝑞) and ensures that no discarded messages
are lost. If 𝑝 logs all the messages it sends from events in 𝑠 (𝑝)
then there are no discardedmessages (i.e.,𝑇𝐷𝑒

(𝑠 (𝑝)) = ∅) and
the constraint is trivially satisfied. However, if 𝑝 does not log
output messages, then it is often the case that 𝑇𝐷𝑒

(𝑠 (𝑝)) ⊆
𝑠 (𝑝) because many processors only ever send messages at
a logical time 𝑡 in response to processing events at 𝑡 . Such
processors need not keep track of𝑇𝐷𝑒

and can conservatively
assume 𝑇𝐷𝑒

(𝑠 (𝑝)) = 𝑠 (𝑝). By contrast, if processors send
“into the future”, they must keep track of 𝑇𝐷𝑒

, or roll back
completely on every failure (e.g., Differential Dataflow [29]
processors that output messages with time 𝑡2 in response to
messages with logical time 𝑡1, where 𝑡1 < 𝑡2).
No messages are duplicated. This constraint ensures
that processor 𝑞 rolls back far enough that any messages
it received are within the span “fixed” by 𝑝’s rollback
(i.e., 𝜙𝑒 (𝑠 (𝑝))), in the sense described in §3.2. If 𝑞 has not
explicitly kept track of 𝑇𝑀𝑒

∩ 𝑠 (𝑞) then it is safe to proceed
conservatively as if 𝑇𝑀𝑒

∩ 𝑠 (𝑞) = 𝑠 (𝑞).
No transmittedmessages are lost. This is a technical con-
straint, which ensures that no messages in transmission are
lost in case of a failure. The constraint is that 𝑝 and 𝑞 can
only roll back to 𝑠 (𝑝) and 𝑠 (𝑞) as long as no message with
a time in 𝑠 (𝑞) sent by an event at 𝑝 with a time in 𝑠 (𝑝) was
lost in transmission during the failure. Our implementation
satisfies this constraint by saving a checkpoint for span 𝑠 (𝑞)
only after it is certain it will not send any more messages
to 𝑞 with times in 𝑠 (𝑞); we say that the times in 𝑠 (𝑞) are
complete at 𝑞 when this condition is satisfied. In order for 𝑞
to “roll back” to 𝑠 (𝑞) = ⊤ then either 𝑠 (𝑝) = ⊤ in which case
we know that no messages from 𝑝 to 𝑞 were lost, or there
must be some span 𝑠 such that all messages sent by 𝑝 in 𝑠

have times in 𝑠 , and all times in 𝑠 are complete in 𝑞.
Falkirk Wheel ensures that a rollback satisfies the above-

mentioned constraints at all processors by choosing a max-
imal span for each 𝑝 . Each span is chosen from 𝑆 (𝑝) =

{𝑠1, . . . , 𝑠𝐾 }, where 𝑠1 ⊂ 𝑠2 ⊂ . . . ⊂ 𝑠𝐾 , and denotes the

Falkirk Wheel: Rollback Recovery for Dataflow Systems SoCC ’21, November 1–4, 2021, Seattle, WA, USA

sequence of spans for which 𝑝 has saved enough informa-
tion to roll back to. FalkirkWheel chooses the maximal spans
for rollback using the following fixed-point algorithm, where
In(𝑝) and Out (𝑝) are the incoming and outgoing edges of 𝑝 .
Initially: ∀𝑝, 𝑠 (𝑝) = max{𝑠 ∈ 𝑆 (𝑝)}.
Continue until fixed point:

𝑠 ′(𝑝) = max{𝑥 ∈ 𝑆 (𝑝) such that 𝑥 ⊆ 𝑠 (𝑝)
∧ ∀𝑒 ∈ Out (𝑝), 𝑇𝐷𝑒

(𝑥) ⊆ 𝑠 (dst (𝑒))
∧ ∀𝑑 ∈ In(𝑝), 𝑇𝑀𝑑

∩ 𝑥 ⊆ 𝜙𝑑 (𝑠 (src(𝑑)))}
After the algorithm finds the solution, Falkirk Wheel re-

stores 𝑝 , from checkpoint and/or logs, to the state corre-
sponding to the events in 𝑠 (𝑝). Following, it removes any
spans greater than 𝑠 (𝑝) from 𝑆 (𝑝), and discards any logged
messages that were sent by events with times outside 𝑠 (𝑝).
Finally, it sets the message queue on an outgoing edge 𝑒 to
processor 𝑞 to contain the messages in 𝐿𝑒 whose times are
not in 𝑠 (𝑞).
We note that as long as ∅ ∈ 𝑆 (𝑝) for all 𝑝 , the algorithm

converges since 𝑠 never increases, and 𝑠 (𝑝) = ∅ for all 𝑝
satisfies all constraints. While the algorithm always finds
a solution, applications might suffer cascading rollbacks in
pathological situations. Falkirk Wheel offers a flexible design
to support many choices of where and when to checkpoint
and log, but it is the application developer’s duty to ensure
that logging/checkpointing happens in appropriate places
such that the application does not suffer cascading rollbacks.
For example, a developer could choose a more restrictive
regime (e.g., eager checkpointing) to execute the application.
3.4 Selective Rollback

In the previous subsections, we implicitly assumed that the
events in a span 𝑠 (𝑝) are a prefix of the events that had been
delivered to 𝑝 , so rolling 𝑝 back to 𝑠 is equivalent to restoring
𝑝 to its state at the moment when it had processed that prefix
of events. However, this restriction requires a processor to
suspend delivery of a message until all messages with earlier
logical times are processed. As a result, the processor stalls
until no earlier messages remain in the application, introduc-
ing additional latency and requiring messages to be buffered
that could otherwise be eagerly delivered. For example, a
processor that computes analytics over sliding or rolling time
windows cannot process multiple time windows in parallel.
Furthermore, if input messages arrive after the end of their
time window, which is common [4], the processing of other
time windows is further delayed.
To address this restriction a developer could shard logi-

cal times across processors. However, this approach would
reduce the performance of processors that need to simultane-
ously update state for multiple logical times (e.g., incremental
computations). As a result, we introduce selective rollback,
which enables Falkirk Wheel to meet the following twin

Select Sum Buffer

three

two

four

two

3

2

4

7

2

Rollback
occurs here

Time

3

3 2

7 2

2

2

2

7

7

7

7

Figure 4: Selective rollback. Rectangles showmessages
and ovals processor state. A message or state with a
white background corresponds to logical time 𝑡1, while
a gray background corresponds to logical time 𝑡2. The
dotted line indicates when a processor will not receive
any more messages with time 𝑡1; at this point the Sum
processor sends an output message and discards its
state related to 𝑡1. Lastly, the dashed line indicates the
time when a processor failure occurs. Due to selective
rollback, processors can process logical times in par-
allel, and upon failure can roll back to a state where
they have consumed all messages at 𝑡1 and none at 𝑡2.

performance requirements: processors must be able to inter-
leave the delivery of messages with different logical times,
and also checkpoint only state corresponding to completed
logical times. Selective rollback allows a processor that has
consumed messages at two logical times 𝑡1 and 𝑡2 to preserve
its work for time 𝑡1 after rollback, but undo and re-execute its
work for 𝑡2, independently of the order it performed the work.
However, not all processors can selectively roll back because
they must produce correct results under certain message
re-orderings on their input edges. Concretely, a processor
cannot selectively roll back if its input messages with a given
logical time are not delivered in FIFO order.
While not all processors can selectively roll back, we be-

lieve selective rollback is practical because most applications
deliver messages in FIFO order, and either keep no state at
a processor or partition a processor’s state by logical time
(e.g., an aggregate counter keeping an intermediate counter
for a batch of input messages, state stored during a time
window). Moreover, many processors can safely delete the
state corresponding to a logical time once that logical time
is complete (e.g., at the end of a time window, or after an
aggregate counter has processed inputs and released output).
As a consequence, if a processor can wait until logical time
𝑡1 is complete and its portion of local state is deleted, then
the processor does not need to checkpoint.
To exemplify selective rollback, Fig. 4 shows a fragment

of a simple application made up of Select, Sum, and Buffer
processors, as well as a timeline of message deliveries and
corresponding updates to the processor state, shaded accord-
ing to logical times. The Select processor translates a word

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Ionel Gog, Michael Isard, and Martín Abadi

into its numeric representation, and is stateless. The Sum
processor accumulates a sum for each logical time. When no-
tified that there will be no more messages at a given logical
time (i.e., time is completed), Sum outputs the accumulated
sum for that time and removes the sum from its local state.
The Buffer processor records all messages it has seen.

In this application, each processor makes a selective check-
point after seeing the final message tagged with logical time
𝑡1 (shown with the dotted line). The selective checkpoint
does not include a processor’s full state, but only the state
it would contain having only seen all messages from logical
time 𝑡1, but no messages from 𝑡2. Upon a processor failure,
the processors first roll back (shown as a shaded rectangle)
to their selective checkpointed state. Subsequently, an up-
stream processor re-executes, causing the time 𝑡2 message
to be re-sent, and eventually the application state returns
to that before the rollback. We note that executing the ap-
plication without selective rollback would prevent it from
interleaving the delivery of messages at different logical
times, and would demand checkpointing of non-empty state
for its Sum processor, either of which would introduce a
substantial performance penalty.
Falkirk Wheel supports such applications, and is correct

even if a processor 𝑝 delivers messages out of order (e.g.,
some events outside of span 𝑠 are processed before some
events inside 𝑠). Then restoring to span 𝑠 corresponds to
rolling 𝑝 back to a selective checkpoint that remembers only
the events in span 𝑠 . Falkirk Wheel achieves this by using
the fixed-point algorithm (§3.3), which computes consistent
spans even when processors selectively checkpoint.

4 Falkirk Wheel Implementation
In order to demonstrate the practicability of our design, we
apply FalkirkWheel to Naiad (FW-N), a general dataflow sys-
tem, which combines batch, graph, incremental and iterative
stream processing [31]. We describe the practical challenges
in applying Falkirk Wheel to data processing systems, but
also the changes we made to Naiad. We focus on issues that
would be common to any implementation, such as: failure
recovery (§4.1), logging and checkpointing for different fault-
tolerance regimes (§4.2), garbage collection of checkpoints
and management of inputs/outputs in long-running applica-
tions (§4.3), updating processors to use Falkirk Wheel (§4.4),
and applying Falkirk Wheel to other systems (§4.5).

4.1 Failure recovery

FW-N provides a spanmonitoring service that keeps track
of progress across processors, and executes the algorithm
for computing globally consistent spans to roll back to in
case of a failure (see §3.3). For each processor 𝑝 , the span
monitor tracks the following metadata: (i) which spans 𝑝
can restore to, (ii) the maximal times of processed events

at those spans, and (iii) the times of messages 𝑝 sent but
did not log. FW-N updates this metadata after a processor
has persisted a checkpoint for its state corresponding to a
span 𝑠 , and has logged any messages it sent from times in
𝑠 . Despite the regular updates, the in-memory metadata is
small, at most a few Kb per span. Moreover, the monitor is
simple to replicate for reliability because it is deterministic
and monotonic, and does not have a large memory footprint.

In our FW-N implementation, a processor 𝑝 discovers the
failure of another processor 𝑞 by the failure of a network
connection to a remote machine. When this happens 𝑝 con-
tinues to work, buffering output to 𝑞 in case the connection
is re-established. However, when a failure detector confirms
𝑞’s failure, FW-N initiates recovery.

During recovery processors must pause execution before
rollback. However, before processors can pause they must
finish executing the user code for any event being processed.
Because this may be slow, we allow developers to divide
processors into three types: latency-insensitive, normal, and
low-latency. Latency-insensitive processors are asked to pause
as soon as a failure is detected, and drain their event pro-
cessing in parallel with the restart of failed processors. Once
failed processors have restarted, FW-N tells normal proces-
sors to pause, and finally FW-N asks low-latency processors
to pause after the normal processors have stopped. Thus,
our implementation minimizes the time that a low-latency
component is suspended after a failure.

Pausing processors send up-to-date metadata to the span
monitor, which temporarily also adds ⊤ to the available
rollback spans for any non-failed processor. At this point
the monitor executes the algorithm for computing the glob-
ally consistent spans to roll back given the failed processors
(see §3.3), and transmits the computed spans to the paused
processors. Following, the application restarts, and the pro-
cessors that restored to ⊤ continue unaffected, while other
processors restore to their rollback spans, and lazily re-read
and retransmit logged messages.

By default a stateful processor that is rolling back is reini-
tialized to an empty state and presented with streams from
which to restore. However, non-failed processors may op-
tionally maintain data structures to allow in-memory rollback
to a span 𝑠 by discarding state corresponding to events out-
side 𝑠 instead of restoring from checkpointed storage. This
substantially reduces recovery time, and the aggregate load
on distributed storage as many processors roll back at once.

4.2 Logging and Checkpointing

The support for logging and checkpointing we added to
Naiad is similar to that which would be required for any data
processing system. Moreover, it was easy to make FW-N au-
tomatically keep track of metadata for all processors. Naiad
already requires that messages are serializable in order to

Falkirk Wheel: Rollback Recovery for Dataflow Systems SoCC ’21, November 1–4, 2021, Seattle, WA, USA

support distributed operation so we were able to log sent
messages, where indicated by the application, without chang-
ing the implementation of any processor. We next describe
the logging and checkpointing required for processors to
run in the fault-tolerance regimes we introduced in §1.
Ephemeral regime. A processor can request the logging of
all of its delivered messages, which gives any deterministic
processor without external side effects fault-tolerance with
no coding effort. FW-N can roll back the processor to any
span by replaying the sequence of messages the processor
has processed with times in the span. This regime is a good
fallback, but the sequence of messages grows without bound
so it is not suitable for long-running applications.
Batch regime. A processor can use this regime if it does not
keep state between logical times. We call such a processor
“stateless” even though it may accumulate state within a
logical time. FW-N periodically flushes logged messages and
persists metadata for such processors, and informs the span
monitor so that garbage collection can take place. In our
implementation, we did not have to change the user-provided
code of any stateless processor while adding fault-tolerance.
Lazy checkpointing regime. A processor can run in this
regime by asking FW-N to trigger periodic checkpoint call-
backs when times are completed. Processors use local policy
to decide when to write checkpoints in response to callbacks,
and can write either full or incremental checkpoints. FW-N
buffers writes to stable storage and delivers an asynchronous
notification once the writes have been persisted. As a result,
applications are not stalled by fault-tolerance traffic to stable
storage unless the buffer fills up, which happens only when
writing large full checkpoints.
Eager checkpointing regime. A processor uses this
regime in order to offer low-latency recovery. The processor
persists its state and messages, and sends metadata updates
to the span monitor after it completes each logical time.

4.3 Executing Long-Running Applications

Applications that run continuously impose constraints on
FalkirkWheel’s design: (i) they must run without exhausting
physical memory or amassing unbounded state in stable stor-
age, and (ii) they must communicate reliably with external
input sources and output consumers, to receive and send
unbounded streams of data. We now describe mechanisms
that enable FW-N to support such applications.
Garbage collection. FW-N garbage collects persisted state
of applications with the help of the monitor service. The
monitor receives metadata describing a new persisted check-
point, and continuously runs an incremental version of the
algorithm outlined in §3.3 to track, for each processor 𝑝 , a
low-watermark of the earliest span 𝑝 would have to roll back
to in the worst case that all processors failed at once. The

monitor informs 𝑝 every time its low-watermark span in-
creases, so 𝑝 can garbage collect superfluous state. Moreover,
it also notifies processors that send to 𝑝 , so that they can
discard logged messages that no longer need to be re-sent. As
a result, the redundant persisted state and logged messages
are garbage collected as soon as the incremental algorithm
computes a new low-watermark span (usually several mil-
liseconds after the monitor receives the metadata).
Inputs and outputs. To be able to provide exactly-once se-
mantics, we require that services producing and consuming
input and output support fault tolerance via acknowledg-
ment and retry. Services producing input keep a batch of
data available, and re-send it if requested, until the batch is
acknowledged by the application. The application must be
prepared to re-send a batch of output until it is acknowledged
by the consuming service. These assumptions are compatible
with services such as Kafka [8] and Azure Event Hubs [30].

FW-N uses the span monitor to handle input and output
acknowledgments. An input processor acknowledges all in-
puts received at times in a span 𝑠 when it is informed by
the monitor that it will never need to roll back beyond 𝑠 .
Similarly, an output processor buffers messages and does not
send them until told their times will never be rolled back.

4.4 Adding Fault Tolerance to Naiad Processors

Most users leverage existing libraries of operators (e.g., Spark
transformations, Naiad Differential Dataflow) to develop ap-
plications. Such libraries will ship with default operator-
specific fault-tolerance, which will need to be tuned only by
power users. We now discuss the changes we made to apply
Falkirk Wheel to Naiad’s main libraries: (i) Lindi, a library
of processors that keep no state between logical times, with
similar functionality to Spark [37] plus support for iterations,
and (ii) Differential Dataflow [29], a library designed for in-
cremental iterative computation, comprised of processors
that keep state in order to respond quickly to updates.
All Lindi processors are stateless, and thus we suppress

logging of sent messages (𝐿𝑒) and assume that each processor
receives a message in each epoch (i.e., the worst case). As a
result, FW-N can reconstruct processors’ metadata on failure
without persisted state, and update the span monitor on new
completed spans without waiting for stable storage. Thus,
Lindi processors incur no fault-tolerance overhead beyond
periodically sending metadata updates to the span monitor.
We note that while most Lindi processors do not log sent
messages, somemight be instructed by developers to log sent
messages in order to prevent cascading rollbacks in upstream
processors (like a persisted Spark RDD).

Differential Dataflow processors store state differentiated
by logical time, and use a common library for maintaining in-
memory state. Processors partition state in order to support
low-latency incremental updates with iteration [29], and we

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Ionel Gog, Michael Isard, and Martín Abadi

believe that any system that has the capability to overlap pro-
cessing at different logical times is likely to adopt a similar
state partitioned by time. Applying Falkirk Wheel to Differ-
ential Dataflow required adding persistence to the library
for maintaining state, but no additional effort for processors.
Moreover, given the time-partitioned state, it was straight-
forward to implement selective checkpointing/restoring (full
or incremental) of the state corresponding to a set of times.

Most of the complexity of adding fault-tolerance to Differ-
ential Dataflow processors arose from our choice of imple-
menting in-memory rollback. The main challenge was that in
order to prevent state from growing, processors can coalesce
state corresponding to distinct logical times in the past as
logical times become complete. Thus, FW-N must take care
not to compact state that would need to remain distinct if
a processor were to roll back. To ensure correctness, FW-N
divides logical times into three regions: (i) stable times be-
yond which the processor will not roll back, (ii) recent times
that have not yet been checkpointed, and (iii) all other times.
FW-N allows processors to coalesce times only in the stable
and recent regions.

4.5 Applying Falkirk Wheel to Other Systems

In order to benefit from Falkirk Wheel, users of existing data
processing systems would not be required to migrate their
applications to Naiad, but developers would have to inte-
grate Falkirk Wheel into their systems. The changes would
be minimal, similar to the ones we made to Naiad (e.g., send-
ing metadata to the monitor, pausing processors for rollback,
choosing fault-tolerance regimes for libraries). Moreover,
these systems could reuse the span monitor we implemented,
and one could imagine a setup with data processing systems
subscribing to the monitor and communicating via trans-
former functions, much as systems share Zookeeper [22].

5 Evaluation

We use our FW-N implementation to evaluate the efficacy
of our Falkirk Wheel design. We seek to answer:
(1) Does FW-N offer low-latency responses in steady state
and during failure recovery for applications that combine
batch, real-time, and graph processing? (§5.1)
(2) How does FW-N compare to Naiad’s batch-tuned fault-
tolerance regime? (§5.2)
(3) How does FW-N compare to fault-tolerance regimes
offered by stream processing systems? (§5.3)
(4) Does selective rollback reduce latency? (§5.4)
(5) How does the system span monitor scale? (§5.5)
Setup. We performed all experiments on a cluster of 25 ma-
chines. Each machine has a Xeon E5-2430Lv2 CPU (12×
2.40GHz), 64 GB RAM, and a 30GB SSD drive.

5.1 Latency on the Ad-Serving Application

To demonstrate the benefits of combining different fault-
tolerance regimes, we developed an application that com-
prises of batch analytics, real-time graph processing, and real-
time analytics. The application has the structure of Fig. 1, and
contains contains 107 stages in the dataflow graph, where
each stage is replicated as multiple data-parallel processors.
The application receives input data in batches of around

10MB once a second. The first stages select data and reduce
each batch to around 1.2MB. These reduced batches are then
persisted so that the application can acknowledge inputs
without having to persist the non-reduced input batches.

Following, the real-time component computes the weakly
connected components of a graph derived from a sliding
window of the input data, running on 15 machines. The
component updates the graph every 20 seconds using data
from the newly arrived batches, and selectively checkpoints
each processor at the span corresponding to every update, at
which point data from the next window are flowing around
the loop of the connected components algorithm (i.e., the
connected computation has started for the next window).
Simultaneously, the batch component emulates a collab-

orative filtering algorithm by executing a slow pipeline of
three MapReduce steps running on five machines. The com-
ponent runs once every minute on newly arrived data, and
logs its final output, but no intermediate state.
Lastly, the application implements user analytics queries

using a distributed join running on four machines. This com-
ponent matches the most recent persisted output of the batch
collaborative filtering component and the output of the real-
time connected components computation as reported by the
span monitor. Thus, its processors are guaranteed never to be
rolled back in the event of a failure in the other components.
In Fig. 5, we show the externally visible consequences of

emulated processor failures. The triangle data points show
query latencies, plotted at the times the queries complete.
The vertical dash data points show the latencies of input
batches being persisted (so they can be acknowledged to the
data source), plotted at the time the batches have persisted.
The first dashed vertical line shows the time when three
processors fail. One processor is mapping input batches, and
the other two are part of the real-time connected components
computation. The second line shows the time when all failed
processors are ready to restore their state, and all processors
have been paused (see §4.1). The third line shows when the
monitor has computed rollback spans, and the fourth shows
when the failed processors have restored their state and
resumed. At around 263 seconds all the batches that were
queued during the failure can be seen being persisted, having
been processed in parallel by the system.

Falkirk Wheel: Rollback Recovery for Dataflow Systems SoCC ’21, November 1–4, 2021, Seattle, WA, USA

245 250 255 260 265 270
Experiment time [sec]

0
2
4
6
8

10
12
14
16

L
at

en
cy

[s
ec

]
First

failure

Processors
paused

Rollback
computed

Processors recovered Input stable latency [sec]
Query latency [sec]

Figure 5: Latency of different application components during failure recovery. FW-N allows query latency to
remain low despite three machine failures (at around 250 seconds), masking the longer recovery time required
for the latency of batch input processing to return to its normal levels.

Input stable Query
0
6

12
18
24

L
at

en
cy

[s
ec

]

Naiad FW-N

Figure 6: Latency in the absence of failures. Un-
like Naiad’s synchronous coordinated checkpointing,
FW-N offers low latency for both components because
it combines multiple fault-tolerance regimes.

0 200 400 600 800
Response latency [ms]

0
0.2
0.4
0.6
0.8
1.0

C
D

F FW-N
Drizzle
Flink

(a) At-least-once semantics.

0 500 1000 1500
Response latency [ms]

0
0.2
0.4
0.6
0.8
1.0

C
D

F

(b) Exactly-once semantics.
Figure 7: Latency in steady state. FW-N has lower re-
sponse latency than Flink and Drizzle, both with at-
least-once (a) and exactly-once (b) semantics. Results
on YSB executed on 25 machines.

Takeaway: the experiment illustrates that: (i) the latency
of queries is not significantly affected by failures of other
application components, and (ii) components can recover
independently from failures. These two benefits are due to
FW-N’s ability to combine fault-tolerance regimes.

5.2 FW-N vs. Naiad

We now use the previously described application to com-
pare FW-N with the batch-tuned synchronous coordinated
checkpointing fault-tolerance regime provided in Naiad by
default [31]. In the experiment, we set Naiad to pause all
processes every 10 seconds in order to take a checkpoint of
their state. This checkpointing frequency represents a sweet
spot. Checkpointing too often increases the latency of the
batch components, while checkpointing infrequently adds
latency to the user queries, which require exactly-once se-
mantics and cannot be released until state is checkpointed
(i.e., Naiad has an output latency greater than the time be-
tween checkpoints). Fig. 6 shows the latency between batch
inputs arriving and being stably persisted (on the left-hand

side), and the latency from query arrival to response (on
the right-hand side). The plots show median, 25th and 75th
percentile (box), 1st and 99th percentile (whiskers), and max
(star) latencies over 300 input batches and 1,000 queries.
Takeaway: Naiad offers a single fault-tolerance regime, and
thus it cannot offer both high throughput for the batch com-
ponent, and low latency for the query component. By con-
trast, FW-N combines fault-tolerance regimes, logs records
where appropriate, and releases messages as soon as the
rollback low-watermark is updated by the span monitor.

5.3 Response Latency on Streaming Applications

We now compare FW-N with the fault-tolerance solutions of
two state-of-the-art streaming systems: (i) distributed snap-
shots [13] for Flink [6], and (ii) Drizzle [36] for Spark [37].
We investigate the response latency both in steady state and
during failure recovery by executing the Yahoo! Streaming
Benchmark (YSB) [16]. The YSB application computes ad
campaign statistics. It receives a stream of JSON ad view
events as input from Kafka, selects ads of a certain type,
associates them with a campaign, and computes total ads for
each campaign for every 10 second window.

We replicate Drizzle’s streaming workload latency experi-
ment [36, Fig. 8], and we measure response latency, defined as
the time from the end of a window until the results are output
for the window. In the experiment, we compare with Driz-
zle’s published YSB implementation, and an optimized Flink
implementation [21]. Moreover, in order to isolate the perfor-
mance of the fault-tolerance solution from the performance
of other systems used in the YSB application, we produce
input data on the fly rather than ingest it from Kafka. Other-
wise, Kafka would become a bottleneck at around 300,000
events per second per machine [28]. Finally, we ensure that
all our implementations do not deserialize JSON strings, but
directly produce input data, as otherwise the application
would be bottlenecked on JSON deserialization [28].
Steady state. In Fig. 7a, we show response latencies in steady
state while processing 10 million events per second. We con-
figured the implementations to provide at-least-once seman-
tics in order to match Drizzle’s experiment [36, Fig. 8]. For
each system, we report the numbers for the best configura-
tion (Drizzle uses 200ms long batches and a group size of
10; Flink checkpoints every second).

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Ionel Gog, Michael Isard, and Martín Abadi

150 200 250 300 350 150 200 250 300 350
Time [sec]

0
400
800

1200
1600
2000
2400

R
es

po
ns

e
la

te
nc

y
[m

s]

Worker failure
At-least-once

Worker failure
Exactly-once

Flink
Drizzle
FW-N

Figure 8: Latency during failure recovery. FW-N has up to 10× lower mean response latency during failure recov-
ery, both with at-least-once and exactly-once semantics. Results on YSB executed on 25 machines.
Following, we modify the implementations to provide

exactly-once semantics, and we show the response latencies
of the three systems in Fig. 7b. In this setup, FW-N offers
approximately 3× lower response latency than Drizzle, and
around 5× lower than Flink beyond 50th percentile. These
latency differences are fundamental. Flink checkpoints at
pre-defined processing time intervals, which might happen
at unsuitable times (e.g., during a time window), and thus
force the application to checkpoint large states. Moreover,
Flink can only release outputs after it checkpoints state (i.e.,
each second after it is certain output will not to be rolled
back). Similarly, Drizzle can only release output after it check-
points state at the end of each group of tasks. While one
could increase checkpointing frequency, this would affect
throughput and in many cases cancel the latency reductions
obtained from being able to release outputs more frequently.
By contrast, FW-N tracks fine-grained computation progress,
and releases output as soon as it updates spans.
Failure recovery. In Fig. 8, we show response latency dur-
ing recovery from an emulated machine failure at 240 sec-
onds experiment time. On the left we execute with at-least-
once semantics to replicate Drizzle’s failure recovery exper-
iment [36, Fig. 7]3. On the right we show response laten-
cies when providing exactly-once semantics. In both setups,
FW-N recovers quickly and offers a mean response latency
several times smaller than Drizzle and Flink.
Takeaway: The monitor tracks fine-grained spans and en-
ables FW-N to offer lower response latency than other sys-
tems in steady state and during recovery.

5.4 Benefits of Selective Rollback

To explore the benefits of selective rollback, we develop a
more challenging version of the Yahoo! Streaming Bench-
mark that stresses the performance of FW-N. In this experi-
ment, we increase the workload 12× (i.e., 120 million events

3Our initial Flink results were similar to prior results [36, Fig. 7], but after
an investigation we found that reducing “akka.ask.timeout” to 1500ms,
“gate-invalid-addresses-for” and “retry-gate-closed-for” to 100ms, decreases
latency during recovery by 10×. These flags control the timeout Flink uses
to mark workers and tasks dead. We set the values as low as possible while
ensuring that workers and tasks are not incorrectly marked dead.

per second), we reduce the window to one second, and we
delay some ad events such that they arrive outside of the win-
dow in which they are created. We note that we only show
results for FW-N because the other systems could not keep
up with this high-throughput workload. Drizzle and Flink
scaled up to 60 and 90 million events per second, respectively.

In the presence of delayed events, FW-N without selective
rollback can either use Chandy-Lamport to coordinate check-
pointing (similar to Flink), or block processing of other win-
dows until it finishes processing thewindowwith the delayed
events. The former approach increases latency, whereas the
latter approach causes a backlog of events to accumulate
while Naiad waits for the delayed events. Since the former
approach does not outperform FW-N on a less challenging
benchmark (see Flink results in Fig. 7b), we choose to com-
pare the latter approach with FW-N with selective rollback
enabled. In Fig. 9a, we show a timeline of mean response
latency during the experiment. At 30 seconds in the experi-
ment, we delay several ad events, which we submit 400ms
after the end of their time window. FW-N with selective roll-
back can process subsequent time windows, and thus offers
low response latency in the presence of delayed events.
Moreover, in Fig. 9a we highlight the differences in re-

sponse latencies when events are delayed often. We show
results as a CDF of response latencies when several events
are delayed by 400ms every five seconds. While not shown
in figure, it is also important to note that the difference in
response latency of the configurations grows as the fraction
of time windows with delayed events increases.
Takeaway: FW-N with selective rollback reduces response
latency by enabling parallel processing of time windows in
the presence of delayed events.

5.5 Scalability of the Span Monitoring Service

We study the scalability of the span monitor by measuring
the runtime of its slowest component, the algorithm that
computes a globally consistent state to roll back to (see §3.3).
In the experiment, we vary the number of processors by run-
ning the ad-serving application with an increasing number
of processors (i.e., higher parallelism). In Fig. 10 we show

Falkirk Wheel: Rollback Recovery for Dataflow Systems SoCC ’21, November 1–4, 2021, Seattle, WA, USA

20 22 24 26 28 30 32 34 36 38 40 42 44
Time [sec]

0

300

600

900

1200
R

es
po

ns
e

la
te

nc
y

[m
s]

FW-N w/o Selective
FW-N

(a) Several events are delayed by 400ms at 30 seconds.

0 200 400 600 800 1000 1200
Response latency [ms]

0
0.2
0.4
0.6
0.8
1.0

C
D

F

FW-N
FW-N w/o Selective

(b) Several events are delayed by 400ms, every 5 seconds.
Figure 9: Benefits of selective rollback. FW-N with selective rollback offers lower response latency than FW-N in
the presence of delayed ad events.

0 100k 200k 300k 400k
Number of edges

0

1

2

3

4

M
ax

sp
an

ru
nt

im
e

[s
ec

]

Figure 10: Span monitor scalability. The slowest com-
ponent of the monitor, the algorithm for choosing
maximal spans for rollback, scales linearly with the
number of edges.

the runtime as the number of processors increases, and im-
plicitly the number of edges between them (i.e., connections
between processors). Since the algorithm uses pairwise con-
straints between processors, as expected the runtime scales
linearly with the number of edges.
Takeaway: The algorithm completes within seconds even
for large applications that have hundreds of thousands of
edges between processors. We anticipate few applications to
have as many edges in practice. Nevertheless, the runtime
could be further reduced by applying divide and conquer, and
by splitting the monitor into a hierarchy of span monitors.

6 Related Work
Dataflow systems such as Apache Samza [9], Storm + Tri-
dent [10, 35], MillWheel [3], Google Dataflow [4], Stream-
Scope [27], and TimeStream [33] support stateful proces-
sors and a fault-tolerance regime that guarantees exactly-
once semantics. TimeStream uses sequence numbers to track
progress, and is similar to our solution for processors where
little is known about their semantics. MillWheel, Storm and
Samza persist messages and state updates as soon as they
are processed (corresponding to our eager checkpointing
regime). By contrast, StreamScope asynchronously check-
points state to remove the overhead of reliable persistence
from the critical path, while keeping the probability of roll-
back low (akin to our lazy checkpointing regime).

Special cases of FalkirkWheel have been demonstrated for
batch [17, 20] and streaming [6, 23, 26] systems. These data

processing systems have adopted fault-tolerance regimes
that are subsumed by Falkirk Wheel. Going beyond previous
solutions, Falkirk Wheel offers uniform support for multiple
existing fault-tolerance regimes and permits selective roll-
back, which enables fault tolerance without compromising
performance even in the presence of delayed events.

Other designs exploit the knowledge that some processors
are deterministic to reduce rollback [14, 20]. Falkirk Wheel
could integrate such techniques by extending the algorithm
that computes rollback spans to account for determinism.
Several other streaming systems (e.g., Borealis [11], Au-

rora [1]) achieve fault tolerance by actively replicating pro-
cessors [5, 24, 34]. These systems are designed for special-
case applications that can be implemented in acyclic stream-
ing dataflows, and thus cannot execute complex applications
(e.g., our ad-serving application). However, extending Falkirk
Wheel to support general forms of active replication is in-
teresting future work. Such a fault-tolerance regime would
provide another point in the trade-off between performance
overhead in steady state and recovery latency. Actively repli-
cated components would suffer little overhead in the steady
state and would recover quickly, but would waste resources.

7 Conclusions

State-of-the-art data processing systems offer a single fault-
tolerance regime so complex applications that combine differ-
ent types of computation (e.g., batch, streaming, incremental)
suffer performance degradation in steady state and during
recovery due to the poor fit of the fault-tolerance regime.
In this paper, we propose Falkirk Wheel, a design

for combining existing fault-tolerance regimes, and also
accommodating new ones. In particular, our design per-
mits selective rollback, which enables fault tolerance
for incremental and iterative systems without compro-
mising performance. By building an implementation of
Falkirk Wheel, and through experiments that combine
high-throughput batch computation, iterative incremental
analytics, and low-latency queries, we show that Falkirk
Wheel is able to reconcile fault-tolerance regimes, which
reduces latency in steady state and during recovery.

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Ionel Gog, Michael Isard, and Martín Abadi

References

[1] Daniel J Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Chris-
tian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and
Stan Zdonik. 2003. Aurora: A New Model and Architecture for Data
Stream Management. Proceedings of the VLDB Endowment 12, 2 (2003),
120–139.

[2] Martín Abadi and Michael Isard. 2015. Timely Rollback: Specification
and Verification. In Proceedings of the NASA Formal Methods Sympo-
sium.

[3] Tyler Akidau, Alex Balikov, Kaya Bekiroǧlu, Slava Chernyak, Josh
Haberman, Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom,
and Sam Whittle. 2013. MillWheel: Fault-Tolerant Stream Processing
at Internet Scale. In Proceedings of the 39th International Conference on
Very Large Data Bases (VLDB).

[4] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,
Rafael J. Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel
Mills, Frances Perry, Eric Schmidt, and Sam Whittle. 2015. The
Dataflow Model: A Practical Approach to Balancing Correctness, La-
tency, and Cost in Massive-scale, Unbounded, Out-of-order Data Pro-
cessing. Proceedings of the VLDB Endowment 8, 12 (Aug. 2015), 1792–
1803.

[5] Rajagopal Ananthanarayanan, Venkatesh Basker, Sumit Das, Ashish
Gupta, Haifeng Jiang, Tianhao Qiu, Alexey Reznichenko, Deomid
Ryabkov, Manpreet Singh, and Shivakumar Venkataraman. 2013. Pho-
ton: Fault-tolerant and Scalable Joining of Continuous Data Streams.
In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data (New York, New York, USA) (SIGMOD). New York,
NY, USA, 577–588.

[6] Apache Software Foundation. Apache Flink. http://flink.apache.org.
[7] Apache Software Foundation. Apache Hudi. https://hudi.apache.org.
[8] Apache Software Foundation. Apache Kafka. http://kafka.apache.org.
[9] Apache Software Foundation. Apache Samza: A Distributed Stream

Processing Framework. https://samza.apache.org.
[10] Apache Software Foundation. Storm: Distributed and Fault-Tolerant

Realtime Computation. https://storm.apache.org.
[11] Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, and

Michael Stonebraker. 2008. Fault-tolerance in the Borealis Distributed
Stream Processing System. ACM Trans. Database Syst. 33, 1 (2008).

[12] Scottish Canals. The Falkirk Wheel. http://www.thefalkirkwheel.co.
uk/.

[13] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter,
and Kostas Tzoumas. 2017. State management in Apache Flink®:
consistent stateful distributed stream processing. Proceedings of the
VLDB Endowment 10, 12 (2017), 1718–1729.

[14] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki,
and Peter Pietzuch. 2013. Integrating scale out and fault tolerance in
stream processing using operator state management. In Proceedings
of the 2013 ACM SIGMOD International Conference on Management of
Data (SIGMOD). 725–736.

[15] K. Mani Chandy and Leslie Lamport. 1985. Distributed Snapshots:
Determining Global States of Distributed Systems. ACM Transactions
on Computer Systems 3, 1 (Feb. 1985), 63–75.

[16] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Tom
Graves, Mark Holderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar
Patil, Boyang Jerry Peng, and Paul Poulosky. Benchmarking Streaming
Computation Engines at Yahoo! https://yahooeng.tumblr.com/post/
135321837876.

[17] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein,
Khaled Elmeleegy, and Russell Sears. 2010. MapReduce Online. In
Proceedings of the 7th USENIX Symposium on Networked Systems Design
and Implementation (San Jose, California) (NSDI’10).

[18] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data
Processing on Large Clusters. In Proceedings of the 6th Symposium on
Operating Systems Design and Implementation (OSDI) (OSDI).

[19] E. N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson.
2002. A Survey of Rollback-Recovery Protocols in Message-Passing
Systems. Comput. Surveys 34, 3 (2002), 375–408.

[20] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki,
and Peter Pietzuch. 2014. Making State Explicit for Imperative Big Data
Processing. In Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference (Philadelphia, PA) (USENIX ATC). 49–60.

[21] Jamie Grier. Extending the Yahoo! Streaming Benchmark. https://data-
artisans.com/blog/extending-the-yahoo-streaming-benchmark.

[22] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin
Reed. 2010. ZooKeeper: Wait-free Coordination for Internet-scale
Systems. In Proceedings of the 2010 USENIX Conference on USENIX
Annual Technical Conference (USENIX ATC, Vol. 8).

[23] Jeong-Hyon Hwang, Magdalena Balazinska, Alexander Rasin, Ugur
Cetintemel, Michael Stonebraker, and Stan Zdonik. 2005. High-
Availability Algorithms for Distributed Stream Processing. In Proceed-
ings of the 21st International Conference on Data Engineering (ICDE).
IEEE Computer Society, Washington, DC, USA, 779–790.

[24] Jeong-Hyon Hwang, Magdalena Balazinska, Alex Rasin, Ugur
Cetintemel, Michael Stonebraker, and Stan Zdonik. 2005. High-
Availability Algorithms for Distributed Stream Processing. In Pro-
ceedings of the 21st IEEE International Conference on Data Engineering
(ICDE). 779–790.

[25] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fet-
terly. 2007. Dryad: Distributed Data-Parallel Programs from Sequential
Building Blocks. In Proceedings of the 2nd ACM European Conference
on Computer Systems (EuroSys).

[26] Richard Koo and Sam Toueg. 1986. Checkpointing and Rollback-
recovery for Distributed Systems. In Proceedings of 1986 ACM Fall
Joint Computer Conference (Dallas, Texas, USA). IEEE Computer Soci-
ety Press, Los Alamitos, CA, USA, 1150–1158.

[27] Wei Lin, Zhengping Qian, Junwei Xu, Sen Yang, Jingren Zhou, and
Lidong Zhou. 2016. StreamScope: Continuous Reliable Distributed
Processing of Big Data Streams. In Proceedings of the 13th USENIX
Symposium on Networked Systems Design and Implementation (Santa
Clara, California) (NSDI). USENIX Association, 439–453.

[28] Frank McSherry. The Yahoo Streaming Benchmark. https://github.
com/frankmcsherry/blog/blob/master/posts/2018-02-11.md.

[29] Frank McSherry, Derek G. Murray, Rebecca Isaacs, and Michael Isard.
2013. Differential Dataflow. In Proceedings of the 6th Conference on
Innovative Data Systems Research (CIDR).

[30] Microsoft. Azure Event Hubs. http://azure.microsoft.com/en-us/
services/event-hubs/.

[31] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martin Abadi. 2013. Naiad: A Timely Dataflow System. In
Proceedings of the 24th ACM Symposium on Operating Systems Principles
(SOSP). ACM.

[32] Derek G. Murray, Malte Schwarzkopf, Christopher Smowton, Steven
Smith, Anil Madhavapeddy, and Steven Hand. 2011. CIEL: a Universal
Execution Engine for Distributed Data-Flow Computing. In Proceed-
ings of the 8th USENIX Symposium on Networked Systems Design and
Implementation (NSDI).

[33] Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu, Hongyu Zhu,
Taizhi Zhang, Lidong Zhou, Yuan Yu, and Zheng Zhang. 2013.
TimeStream: Reliable Stream Computation in the Cloud. In Proceedings
of the 8th ACM European Conference on Computer Systems (EuroSys).
ACM.

[34] Mehul A. Shah, Joseph M. Hellerstein, and Eric Brewer. 2004. Highly
Available, Fault-tolerant, Parallel Dataflows. In Proceedings of the 2004

http://flink.apache.org
https://hudi.apache.org
http://kafka.apache.org
https://samza.apache.org
https://storm.apache.org
http://www.thefalkirkwheel.co.uk/
http://www.thefalkirkwheel.co.uk/
https://yahooeng.tumblr.com/post/135321837876
https://yahooeng.tumblr.com/post/135321837876
https://data-artisans.com/blog/extending-the-yahoo-streaming-benchmark
https://data-artisans.com/blog/extending-the-yahoo-streaming-benchmark
https://github.com/frankmcsherry/blog/blob/master/posts/2018-02-11.md
https://github.com/frankmcsherry/blog/blob/master/posts/2018-02-11.md
http://azure.microsoft.com/en-us/services/event-hubs/
http://azure.microsoft.com/en-us/services/event-hubs/

Falkirk Wheel: Rollback Recovery for Dataflow Systems SoCC ’21, November 1–4, 2021, Seattle, WA, USA

ACM SIGMOD International Conference on Management of Data (Paris,
France) (SIGMOD). ACM, New York, NY, USA, 827–838.

[35] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy,
Jignesh M Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade,
Maosong Fu, Jake Donham, et al. 2014. Storm@ twitter. In Proceedings
of the 2014 ACM SIGMOD International Conference on Management of
Data. 147–156.

[36] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael
Armbrust, Ali Ghodsi, Michael J Franklin, Benjamin Recht, and Ion

Stoica. 2017. Drizzle: Fast and adaptable stream processing at scale. In
Proceedings of the 26th ACM Symposium on Operating Systems Principles
(SOSP) (Shanghai, China). ACM, 374–389.

[37] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker, and
Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-Tolerant Ab-
straction for In-Memory Cluster Computing. In Proceedings of the 9th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI).

	Abstract
	1 Introduction
	2 Background
	3 Falkirk Wheel: Hybrid Fault Tolerance
	3.1 Logical Times
	3.2 Bridging between Logical-Time Domains
	3.3 Globally Consistent Rollback
	3.4 Selective Rollback

	4 Falkirk Wheel Implementation
	4.1 Failure recovery
	4.2 Logging and Checkpointing
	4.3 Executing Long-Running Applications
	4.4 Adding Fault Tolerance to Naiad Processors
	4.5 Applying Falkirk Wheel to Other Systems

	5 Evaluation
	5.1 Latency on the Ad-Serving Application
	5.2 FW-N vs. Naiad
	5.3 Response Latency on Streaming Applications
	5.4 Benefits of Selective Rollback
	5.5 Scalability of the Span Monitoring Service

	6 Related Work
	7 Conclusions
	References

